Plastid phylogenomics reveals evolutionary relationships in the mycoheterotrophic orchid genus *Dipodium* and provides insights into plastid gene degeneration

Heterotrophic plants

-Epipogium roseum-

-Gastrodia umbrosa-

& Low 201 Gray B. Gray; Photo:

-Rhizanthella gadneri-

(Myco)-heterotrophy

Orchidaceae – Life cycle – nutrition strategies

Evolution of mycoheterotrophy

Reduction in leaf size

Loss of photosynthetic activity

Loss of chlorophyll

Degradation of the plastid genome

-Gastrodia umbrosa-

-Rhizanthella gadneri-

Delannoy et al. 201

hoto: D.L. Jon

-Epipogium roseum-

Plastid genome (plastome) of mycoheterotrophs

Rampant Gene Loss in the Underground Orchid Rhizanthella gardneri Highlights Evolutionary Constraints on Plastid Genomes

Etienne Delannoy,*^{1,2} Sota Fujii,¹ Catherine Colas des Francs-Small,¹ Mark Brundrett,³ and Ian Small¹ ¹Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth, Australia ²Laboratoire de Biologie du Développement des Plantes, Commissariat à l'Energie Atomique, Cadarache, St. Paul Les Durances, France ³School of Plant Biology, University of Western Australia, Perth, Australia *Corresponding author: E-mail: delannoy@evry.inra.fr.

Associate editor: Charles Delwiche

plant plastomes:

152,858 kb

Plastid genes - degradation and loss

Functional gene

Functional loss: pseudogenised gene

Physical loss: non-detectable gene

Plastid genes – gene groups

Plastid genes - degradation and loss

Dipodium R.Br.

-Dipodium pandanum-

-Dipodium ensifolium-

-Dipodium elegantulum-

Dipodium R.Br.

Common name: Hyacinth orchids

Subfamily: Epidendroideae Tribe: Cymbidieae

• 39 species

Divided in two section:

- Section Dipodium
- Section Leopardanthus (Blume) O. Kuntze

https://commons.wikimedia.org/wiki/File:BlankMap-World.svg

Section Leopardanthus in Australia

- 'Leafy', autotrophic species
- Adventitious roots, epiphytes and terrestrials

Section Dipodium in Australia

- 'Leafy', autotrophic species
- Non-adventitious roots, terrestrials

Section Dipodium in Australia

- 'Leafless', mycoheterotrophic species
- Non-adventitious roots, terrestrials

Previous studies

CORRIGENDUM

https://doi.org/10.1071/BT22075_CO

Australian Journal of Botany

Corrigendum to: Retention of an apparently functional plastome in an apparently mycoheterotrophic orchid, Dipodium roseum D.L.Jones & M.A.Clem. (Orchidaceae)

Todd G. B. McLay, Michael J. Bayly, Michael R. Whitehead and Rachael M. Fowler

ORIGINAL RESEARCH published: 21 February 2020 doi: 10.3389/fpls.2020.00022

Plastome Evolution and Phylogeny of Orchidaceae, With 24 New Sequences

Young-Kee Kim¹, Sangjin Jo¹, Se-Hwan Cheon¹, Min-Jung Joo¹, Ja-Ram Hong¹, Myounghai Kwak² and Ki-Joong Kim^{1*}

¹ Division of Life Sciences, Korea University, Seoul, South Korea, ² Department of Plant Resources, National Institute of Biological Resources, Incheon, South Korea

Phylogenomic resolution: Orchidaceae

Maximum likelihood phylogenetic tree: Based on 68 plastid loci and 148 taxa

• SH-aLRT/ufboot < 80/95

Divergence-time estimations: Orchidaceae I Epidendroideae I Cymbidieae

Bayesian analyses performed with BEAST 2: based on 30 plastid loci and 134 taxa; Best-fit model for the data set: Optimised relaxed clock/ birth-death (Model comparison by AICM; Fabozzi *et al.* 2014)

Orchid chronogram

Divergence-time estimations: Orchidaceae I Epidendroideae I Cymbidieae

Scotese, C.R., 2014

Bayesian analyses performed with BEAST 2: based on 30 plastid loci and 134 taxa; Best-fit model for the data set: Optimised relaxed clock/ birth-death (Model comparison by AICM; Fabozzi *et al.* 2014)

Early Oligocene

Bayesian analyses performed with BEAST 2: based on 30 plastid loci and 134 taxa; Best-fit model for the data set: Optimised relaxed clock/ birth-death (Model comparison by AICM; Fabozzi *et al.* 2014)

Middle to late Miocene

Australia has arrived at today's geographical position

Bayesian analyses performed with BEAST 2: based on 30 plastid loci and 134 taxa; Best-fit model for the data set: Optimised relaxed clock/ birth-death (Model comparison by AICM; Fabozzi *et al.* 2014)

Late Miocene

95% highest posterior density (HDP) values

Australia's climatic conditions became increasingly arid

Bayesian analyses performed with BEAST 2: based on 30 plastid loci and 134 taxa; Best-fit model for the data set: Optimised relaxed clock/ birth-death (Model comparison by AICM; Fabozzi *et al.* 2014)

Bayesian analyses performed with BEAST 2: based on 30 plastid loci and 134 taxa; Best-fit model for the data set: Optimised relaxed clock/ birth-death (Model comparison by AICM; Fabozzi *et al.* 2014)

Bayesian analyses performed with BEAST 2: based on 30 plastid loci and 134 taxa; Best-fit model for the data set: Optimised relaxed clock/ birth-death (Model comparison by AICM; Fabozzi *et al.* 2014)

Bayesian analyses performed with BEAST 2: based on 30 plastid loci and 134 taxa; Best-fit model for the data set: Optimised relaxed clock/ birth-death (Model comparison by AICM; Fabozzi *et al.* 2014)

climatic oscillations

eopardanthus.

Dipodium

Dipodium plastome: general features

Plastome assembly

• 24 Dipodium plastomes were assembled using Geneious Prime and a de novo & reference-guided assembly approach (reference plastomes D. roseum (MN200386) & M. coccinea (KP205432)).

Dipodium plastome: general features

Plastome assembly

• 24 Dipodium plastomes were assembled using Geneious Prime and a de novo & reference-guided assembly approach (reference plastomes D. roseum (MN200386) & M. coccinea (KP205432)).

Dipodium plastome: structural hotspots – *ndh* genes pseudogenisation and loss

Plastome assembly

• 24 Dipodium plastomes were assembled using Geneious Prime and a de novo & reference-guided assembly approach (reference plastomes D. roseum (MN200386) & M. coccinea (KP205432)).

L**L**.,

tmV-UAC* ndhCΨ ndhKΨ ndhJΨ

5

ndh gene degradation: Dipodium plastomes

Maximum likelihood phylogenetic tree: Based on 68 concatenated plastid loci (69,335 bp) and 145 taxa; Best-fit model: GTR+I+I+F+R4 (IQ-TREE)

ndh gene degradation: Dipodium plastomes

Maximum likelihood phylogenetic tree: Based on 68 concatenated plastid loci (69,335 bp) and 145 taxa; Best-fit model: GTR+I+I+F+R4 (IQ-TREE)

ndh gene degradation: Dipodium plastomes

Maximum likelihood phylogenetic tree: Based on 68 concatenated plastid loci (69,335 bp) and 145 taxa; Best-fit model: GTR+I+I+F+R4 (IQ-TREE)

Plastid genes - degradation and loss

Plastid genes - degradation and loss

Acknowledgments

Funding

The Australian Orchid Foundation Bioplatforms Australia CSIRO Future Science Platform

Master's project supervisors:

Katharina Nargar (ATH, James Cook University, Australia) Phillip M. Schlueter (University of Hohenheim, Germany)

